On the bond distance between bromine and aromatic carbon atoms. By M. N. G. James and G. J. B. Williams,
Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
(Received 16 October 1972; accepted 29 January 1973)

A survey of 60 bond distances between monovalent bromine atoms and carbon atoms in aromatic rings has been carried out. The new expectation value for the $\mathrm{Br}-\mathrm{C}_{\text {aromatic }}$ linkage is $1.8966 \AA$ with an associated standard deviation of $0.0019 \AA$.

The usefulness of a knowledge of the bond distances normally exhibited by various atoms in a variety of situations is self evident to anyone interested in structural chemistry. In an attempt to provide data for either comparative or model-building studies, tabulations of such quantities have been published from time to time. The most complete and most widely used of these is probably that of Sutton (1965). Because, however, the work to which this compilation refers was performed prior to 1960 there are some areas where accrued data were either scanty or unreliable. Discrepancies between Sutton's tabulation and information gleaned from the mass of more recent and more accurate work have inevitably appeared (e.g. Rudman, 1971). In addition, Sutton's compilation was based primarily on electron diffraction studies. The data presented in this paper are abstracted from single-crystal X-ray diffraction studies only. A serious disagreement between the value 1.85 (1) \AA for the bond length between bromine and an aromatic carbon atom given by Sutton and our value of $1 \cdot 897$ (5) Å (James \& Williams, 1971) led us to undertake a survey of such linkages, the results of which are reported here.

Entries in Table 1 were averaged according to the formula given by Sutton:

$$
\begin{equation*}
\langle l\rangle=\sum\left(l_{i} / \sigma_{i}^{2}\right) / \sum 1 / \sigma_{l}^{2} . \tag{1}
\end{equation*}
$$

The distances and standard deviations in the table were used without modification in equation (1) and a weighted mean of $1.8978 \AA$ obtained. An unbiased estimate of $1.901 \AA$ was derived by a simple average of the data sample.

According to Sutton (1965) and Hamilton (1964) the standard deviation in the above estimate $(1.8978 \AA)$ is given by:

$$
\begin{equation*}
\sigma_{<l>}=\left(\sum 1 / \sigma_{l}^{2}\right)^{-1 / 2} \tag{2}
\end{equation*}
$$

The value thus obtained is $0 \cdot 0012 \AA$.
Two values, 2.01 (2) (Larson, 1972) and 1.95 (1) (Rérat, 1969) differ from the weighted mean by more than 5σ and should be omitted from the calculations. When these two values are not included the value of $\langle l\rangle$ is $1.8966 \AA$ with an associated $\sigma_{<1>}$ of $0 \cdot 0012 \AA$.

A full normal-probability plot (Abrahams \& Keve, 1971; Hamilton \& Abrahams, 1972) was plotted and is shown in Fig. 1. The δm_{i} were derived by the equation

$$
\left.\delta m_{i}=\left(l_{i}-\langle l\rangle\right) /\left(\sigma_{l}^{2}+\sigma^{2}<l\right\rangle\right)^{1 / 2}
$$

for the 58 values used in determining the weighted mean ($1.8966 \AA$). The expected values of δm_{l} were derived from Tables of Normal Probability Functions (1953) for a set of $j=58$. The plot is essentially linear, of zero intercept and slope 1.58 . A linear normal probability plot with a slope different from unity is probably an indication of uniform mis-estimation of σ_{i} (Abrahams \& Keve, 1971). In addition
it could mean that the $\mathrm{Br}-\mathrm{C}_{\text {aromatic }}$ distance varies according to the other substituents on the phenyl ring.
The value of $\chi^{2}\left(\sum\left[\left(l_{i}-\langle l\rangle\right)^{2} / \sigma_{i}^{2}\right]\right)$ for the 58 observations is $134 \cdot 84$, indicating again that either the σ_{i} are uniformly underestimated or that the $\mathrm{C}-\mathrm{Br}$ bond lengths differ. The goodness-of-fit, $\left(\chi^{2} / 57\right)^{1 / 2}$, is $1 \cdot 54$, curiously close to the value of the slope from the normal probability plot.

The majority of the compounds listed in Table 1 are p bromo derivatives; it is therefore unlikely that these bond lengths are different. We prefer to use the goodness-of-fit and the slope of the normal probability plot as indicators of underestimation of the σ_{i} 's for the individual $\mathrm{C}-\mathrm{Br}$ bond lengths quoted by the various authors. From the value of the slope of the normal probability plot the σ_{i} 's are approximately 60% too small; this value is reasonably close to the value of 100% well known for the underestimation of the e.s.d.'s in atomic positions derived from the diagonal elements of the inverse matrix in crystallographic block-

Fig. 1. Normal probability plot of δm_{i} tersus the expected δm_{i} for a set of 58 values as derived from Tables of Normal Probability Functions (1953).
diagonal least squares. Thus the value of $\sigma_{<1>}$ should be increased 0.0012 to $0.0019 \AA$ to take cognizance of the uniformly underestimated σ_{i} 's in the table.

This survey has produced a new expectation valuc for the $\mathrm{C}_{\text {aromatic }}$-bromine bond length of $1.8966 \AA$ with a standard deviation of $0.0019 \AA$ from a compilation of the results from X-ray diffraction studies.

We wish to thank the referee for pointing out the egregious error in the original manuscript and for the many helpful comments. Financial support under grant number MA-3406 to M.N.G.J from the Medical Research Council of Canada is gratefully appreciated. One of us (G.J.B.W.) would like to thank the University of Alberta for the award of various Teaching Assistantships and Intersession Bur-

Table 1. A representative survey of $\mathrm{Br}-\mathrm{C}_{\text {aromatic }}$ bond distances (\AA)

Compound

Succinaldehyde/p-bromophenylhydrazine condensation products
Benzil- α-monoxime p-bromobenzoate
3-p-Bromophenyl-1-nitroso-2-pyrazoline
2-Phenyl-7-bromo-benz[d] [1,3]oxazepin
Bundlin A p-bromophenylsulphonylhydrazone
p-Bromobenzoyldimethylamine
2-O-(p-Bromobenzenesulphonyl)-1,4:3,6-dianhydro-D-glucitol-5-nitrate
Propargyl-2-bromo-3-nitrobenzoate
3-p-Bromophenyl-10-phenyl-3,10-diazatricyclo(4,2,1, $1^{2,5}$)-decan-4-one
2-Bromodiazofluorene
2,4,5,7-Tetraphenyl-6-(4-bromophenyl)-1,3-oxazepine
m-Bromonitrobenzene
2-Bromo-4'-dimethylamino- α-cyanostilbene
Tri- p-bromobenzoate of prostaglandin $\mathrm{F}(2-1)$ methyl ester
N-Phenylbenzenesulphonamide, four derivatives
Ceroplastol I p-bromobenzoate
3β-(p-Bromobenzoyloxy)-androst-5-eno-(16 $\alpha, 17-d$)-
$2^{\prime}, 2^{\prime}, 3^{\prime}, 3^{\prime}$-tetrafluoro- $2^{\prime}, 3^{\prime}$-dihydro-6-methylpyran
2,4,6-Tribromoaniline
p-Bromo- m-nitro- N-methylaniline
Bromodihydroacronycine
6-(p-Bromobenzoyl)-6-azabicyclo[3,1,0]hexane
3β - p-Bromobenzoyloxy-13 α-androst-5-en-17-one
3,5-Dibromo- p-aminobenzoic acid
p-Bromophenyldiphenylphosphine oxide
9-Bromo-1,3,7,8,10-pentamethyl-1,5-dihydroisoalloxazine
(+)- α-(1-Napthylphenylmethylsilyl)benzyl p bromobenzoate
anti-7-Norbornenyl p-bromobenzoate
$6 \alpha, 7 \alpha$-Difluoromethylene-11 β-hydroxy-16x,17 α-iso-propylidenedioxy-21-p-bromobenzoyloxypregn-4-en-20-one[3,2,c]-2'-phenylpyrazole
3β-p-Bromobenzoyloxyandrostan-5-en-17-one
cis-5-Acetyl-5,5a,6,7,8,10,11,11a-octahydro-9H-cyclooct[$[b]$ indol-9-one p-bromophenylhydrazone
Iresin di- p-bromobenzoate
2-Bromoketofluorene
Hirsutic acid p-bromophenacyl ester
Ryanodol p-bromobenzyl ether
Neophorbol-13,20-diacetate-3-p-bromobenzoate
Labdanolic acid p-bromophenacyl ester
p-Bromobenzoic acid: piperidine salt
$6 \alpha, 7 \alpha$-Difluoromethylene-16 α-methyl-11 $\beta, 17 \alpha, 21$-tri-hydroxypregn-4-en-20-one[3,2,c]-2'-phenylpyrazole 21-p-bromobenzoate
Trichodermal p-bromobenzoate
p-Bromobenzyl-norbomide
p-Bromophenacyl retigerate A
Desoxycholic acid p-bromoanilide
Glaucarubin p-bromobenzoate
Dihydrofomannosin- p-bromobenzoylurethane
N-(p-Bromophenyl)-2-benzylidene-5-phenyl-4,5-dehydro-3-pyrrolidone

Bond distance(s)
1.82 (4), 1.89 (1), 1.90 (5) Larsen (1972)
1.91 (2), 1.92 (1), 2.01 (2)
1.85 (3)
1.867 (12)
1.87 (3)
1.87 (3)
$1 \cdot 87$ (3)
1.87 (3), 1.96 (3)
1.87 (1)
1.87 (1)
1.876 (31)
$1 \cdot 878$ (7)
1.88 (5)
1.88 (4)
1.88 (2), 1.88 (2), 1.90 (2)
1.88 (1), 1.89 (1), 1.93 (1), Rérat (1969)
1.95 (1)
1.88 (1) Iitaka et al. (1969)
1.381 (8)

1-886 (16), 1-891 (16)
1.896 (16)
1.886 (15)
1.886 (5)
1.886 (5)
1.889 (9)
1.89 (5), 1.90 (5)
$1 \cdot 891$ (7)
$1 \cdot 891$ (6)
1.892 (6)
1.90 (1)
$1 \cdot 901$ (7)
$1 \cdot 901$ (5)
$1 \cdot 902$ (2)
1.905 (35), 1.972 (35)
$1 \cdot 908$ (13)
1.91 (5)
1.91 (2)
1.91 (2)
1.910 (13)
1.910 (10)

1•919(9)
1.93 (2)
1.93 (2)
1.93 (2)
1.93 (2)
1.94 (3)
1.96 (3)
1.96 (2)

Reference

Kerr, Robertson \& Sim (1967)
Sabesan \& Venkatesan (1971)
Jensen (1972a)
Uramoto et al., (1971)
Shibaeva \& Atovmyan (1968)
Camerman, Camerman \& Trotter (1965)
Calabrese, McPhail \& Sim (1966)
Newton et al. (1967)
Griffiths \& Hine (1970a)
Jensen (1972b)
Charlton \& Trotter (1963)
Van Meersche \& Leroy (1960)
Abrahamsson (1969)

Thom \& Christensen (1971a)
Christensen \& Strømme (1969)
Chiaroni (1971)
Gougoutas \& Kaski (1970)
Zacharis \& Trefonas (1968)
Portheine \& Romers (1970)
Pant (1965)
Dreissig \& Plieth (1971)
Norrestam \& Von Glehn (1972)
Nyburg et al. (1972)
Macdonald \& Trotter (1965)
Thom \& Christensen (1971b)

Portheine, Romers \& Rutten (1972)
Duchamp \& Chidester (1972)
Rossmann \& Lipscomb (1958)
Griffiths \& Hine (1970b)
Comer \& Trotter (1966)
Srivastava \& Przybylska (1970)
Brandl et al. (1971)
Bjåmer, Ferguson \& Melville (1968)
Kashino, Sumida \& Haisa (1972)
Christensen (1970)

Abrahamsson \& Nilsson (1966)
Nilsson (1968)
Takahashi \& Iitaka (1972)
Schaefer \& Reed (1972)
Kartha \& Haas (1964)
McPhail \& Sim (1968)
Lefebvre-Soubeyran (1966)
saries during the course of his $\mathrm{Ph} . \mathrm{D}$. studies, of which this work forms a part.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A 27, 157-165.
Abrahamsson, S. (1969). Acta Cryst. 16, 409-418.
Abrahamsson, S. \& Nilsson, B. (1966). Acta Chem. Scand. 20, 1044-1052.
Bjåmer, K., Ferguson, G. \& Melville, R. D. (1968). Acta Cryst. B24, 855-865.
Brandl, F., Röhrl, M., Zechmeister, K. \& Hoppe, W. (1971). Acta Cryst. B27, 1718-1730.

Calabrese, J. C., McPhail, A. T. \& Sim, G. A. (1966). J. Chem. Soc. (B), pp. 1235-1241.

Camerman, A., Camerman, N. \& Trotter, J. (1965). Acta Cryst., 19, 449-456.
Charlton, T. L. \& Trotter, J. (1963). Acta Cryst. 16, 313.
Chiaroni, P. A. (1971). Acta Cryst. B27, 573-581.
Christensen, A. T. (1970). Acta Cryst. B26, 1519-1527.
Christensen, A. T. \& Strømme, K. O. (1969). Acta Cryst. B25, 657-664.
Comer, F. W. \& Trotter, J. (1966). J. Chem. Soc. (B), pp. 11-18.
Dreissig, W. \& Plieth, K. (1971). Acta Cryst. B27, 11401145.

Duchamp, D. J. \& Chidester, C. (1972). Acta Cryst. B28, 1092-1099.
Gougoutas, J. Z. \& Kaski, B. A. (1970). Acta Cryst. B26, 853-859.
Griffiths, A. \& Hine, R. (1970a). Acta Cryst. B26, 34-38.
Griffiths, A. \& Hine, R. (1970b). Acta Cryst. B26, 29-33.
Hamilton, W. C. (1964). Statistics in Physical Science. New York: Ronald Press.
Hamilton, W. C. \& Abrahams, S. C. (1972). Acta Cryst. A28, 215-218.
Iitaka, Y., Watanabe, I., Harrison, I. T. \& Harrison, S. (1969). Acta Cryst. B25, 1299-1310.

James, M. N. G. \& Williams, G. J. B. (1971). J. Med. Chem. 14, 670-675.
Jensen, B. (1972a). Acta Cryst. B28, 771-774.
Jensen, B. (1972b). Acta Cryst. B28, 774-781.
Kartha, G. \& Haas, D. (1964). J. Amer. Chem. Soc. 86, 3630-3634.
Kashino, S., Sumida, Y. \& Haisa, M. (1972). Acta Cryst. B28, 1374-1383.
Kerr, K. A., Robertson, J. M. \& Sim, G. A. (1967). J. Chem. Soc. (B), 1305-1310.
Larsen, I. K. (1972). Acta Cryst. B28, 1136-1151.
Lefebvre-Soubeyran, O. (1966). Bull. Soc. Chim. Fr. pp. 1242-1249.

MacDonald, A. C. \& Trotter, J. (1965). Acta Cryst., 19, 456-463.
McPhail, A. T. \& Sim, G. A. (1968). J. Chem. Soc. (B), 1104-1109.
Newton, M. G., Kapecki, J. A., Baldwin, J. E. \& Paul, I. C. (1967). J. Chem. Soc. (B), pp. 189-194.

Nilsson, B. (1968). Acta Chem. Scand. 22, 518-530.
Norrestam, R. \& Von Glehn, M. (1972). Acta Cryst. B28, 434-447.
Nyburg, S. C., Brook, A. G., Pascoe, J. D. \& Szymanski, J. T. (1972). Acta Cryst. B28, 1785-1791.

Pant, A. K. (1965). Acta Cryst. 19, 440-448.
Portheine, J. C. \& Romers, C. (1970). Acta Cryst. B26, 1791-1799.
Portheine, J. C., Romers, C. \& Rutten, E. W. M. (1972). Acta Cryst. B28, 849-857.
Rérat, B. (1969). Acta Cryst. B25, 1392-1403.
Rossmann, M. G. \& Lipscomb, W. N. (1958). Tetrahedron, 4, 275-293.
Rudman, R. (1971). Acta Cryst. B27, 262-269.
Sabesan, M. N. \& Venkatesan, K. (1971). Acta Cryst. B27, 986-993.
Schaefer, J. P. \& Reed, L. L. (1972). Acta Cryst. B28, 1743-1748.
Shibaeva, R. P. \& Atovmyan, L. O. (1968). Zh. Strukt. Khim. 9, 73-77.
Srivastava, S. N. \& Przybylska, M. (1970). Acta Cryst. B26, 707-715.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, a Practical Guide, p. 423. New York: Macmillan.
Sutton, L. E. (1965). Interatomic Distances and Configuration in Molecules and Ions. Special Publication No. 18. London: The Chemical Society.
Tables of Normal Probability Functions (1953). NBS Applied Mathematics Series, No. 23, U.S. Government Printing Office, Washington, D. C.
TAKahashi, R. \& IItaKa, Y. (1972). Acta Cryst. B28, 764 770.

Thom, E. \& Christensen, A. T. (1971a). Acta Cryst. B27, 794-799.
Thom, E. \& Christensen, A. T. (1971b). Acta Cryst. B27, 573-581.
Uramoto, M., Ōtake, N., Ogawa, Y., Yonehara, H., Mardmo, F. \& Saito, Y. (1971). Acta Cryst. B27, 236241.

Van Meersche, M. \& Leroy, G. (1960). Bull. Soc. Chim. Belg. 69, 204-216.
Zacharis, H. M. \& Trefonas, L. M. (1968). J. Heterocycl. Chem. 5, 343-349.

